Project C4:

Design, fabrication and microscopic analysis of nanoscale devices
(since 2015)

Critical physical phenomena in phase-change based resistive switching devices, like threshold switching or crystallization kinetics, must ultimately be analyzed in their technologically relevant manifestation, i.e. in nanoscale devices. To this aim, electrically switchable lateral devices are manufactured employing lithographic means. Furthermore, advanced test structures are designed around established devices in order to enable unprecedented investigations of the dynamic processes using in operando electron microscopy techniques and rapid annealing schemes. Necessary fabrication procedures are developed, sample series are produced and devices are microscopically analyzed before and after electrical characterization.




Design, fabrication and compositional analysis of phase change
(2011-2015)

E-beam lithography and focused ion beam is being used together with sputter deposition and thermal evaporation for rapidly prototyping lateral, optically accessible cell structures, which are useful for the investigation of material dependent switching characteristics. In addition, the FIB/SEM tool is being used for the analysis of samples both immediately after their fabrication to check their integrity and after experiments have been performed on them to investigate what happens to the cell upon switching. Furthermore, a 3D-atomprobe is being employed to gain insight into the elemental distribution in a cell, quantitatively addressing issues such as interface integrity, diffusion, formation of filaments, electro-migration, etc.

Principal investigator:

Dr. rer. nat. M. Salinga
I.Physikalisches Institut IA
RWTH Aachen University
Phone: +49 (0)241 80 27178
E-mail: martin.salinga@physik.rwth-aachen.de

back | top | projects